

Date Planned : / /	Daily Tutorial Sheet-14	Expected Duration : 90 Min
Actual Date of Attempt : / /	Level-3	Exact Duration :

- **153.** What is the concentration of acetic acid which can be added to 0.5 M HCOOH solution so that dissociation of both is same? ($K_{CH_3COOH} = 1.8 \times 10^{-5}$, $K_{HCOOH} = 2.4 \times 10^{-4}$)
- 154. A weak base BOH was titrated against a strong acid. The pH at ¹/₄ th equivalence point was 9.24. Enough strong bases (6 m. eq) was now added to completely convert the salt. The total volume was 50 ml. Find the pH at this point.
- 155. How many moles of HCl will be required to prepare one litre of a buffer solution containing HCN and NaCN of pH 8.5 using 0.01 mole of NaCN? $K_a(HCN) = 4.0 \times 10^{-10}, \text{ anti log}(-0.887) = 0.1296$
- **156.** Calculate the molar solubility of $Zn(OH)_2$ in $1\,M\,NH_3$ solution at room temperature. K_{sp} of $Zn(OH)_2 = 1.8 \times 10^{-17}$. $K_{stability}$ of $\left[Zn(NH_3)_4\right]^{2+} = 1.64 \times 10^{10}$
- **157.** Calculate the solubility of AgCN in a buffer solution of pH 3.00. $K_{sp(AgCN)} = 1.2 \times 10^{-16}$ and $K_{a(HCN)} = 4.8 \times 10^{-10}$
- 158. After solid $Mg(OH)_2$ was equilibrated in NH_4Cl solution, the ammonium ion concentration was 0.50 M. Calculate Mg^{2+} ion concentration. Given that K_b for $NH_4OH = 1.8 \times 10^{-5}$ and solubility of $Mg(OH)_2$ in pure water is 2×10^{-4} mol L^{-1} .